
Evolving Boid Flocking Behavior
Ryan McArdle, Gianni Orlando, Olusade Calhoun,

Alexander Costa, Zachary Sipper
17 December 2020

Institute for Artificial Intelligence
University of Georgia

Athens, Georgia, USA
rmcardle@uga.edu, gianni.orlando25@uga.edu, olusade.calhoun25@uga.edu,

alexander.costa@uga.edu, zachary.sipper@uga.edu

I. ABSTRACT

Given their relationship with the field of artifical life, it is
no surprise that Reynolds’ boids have been explored using
evolutionary approaches. Often, researchers seek to evolve
boid like behavior either using Reynolds’ definitions as a mo-
tivation or as a goal point. In this research, we use Reynolds’
definition as our basis and seek to evolve realistic boid flight
behavior by evolutionarily optimizing the parameters which
define the behaviors of each boid. We utilize a previously
trained set of classifiers which are intended to recognize
3 behaviors associated with swarm flocking to develop our
fitness function and compare the best species of boids found
by generational and steady state genetic algorithm approaches,
as well as (µ, λ) and (µ+λ) evolutionary strategy approaches.
We also explore the effects of various ratios between µ and
λ for the evolutionary strategies. While we are unable to
find a species of boid which optimizes all behaviors, we are
able to gain a better understanding of the fitness space and
suggest that a (µ + λ) approach is the most likely strategy
for obtaining success under this fitness function. We are
also able to corrobrate suspicions that the classifiers used
do not generalize well beyond their original training set and
support the hypothesis that swarming behaviors are difficult to
formalize in a computational classifier.

II. INTRODUCTION

A. Boids

The concept of boids was first introduced by Craig Reynolds
in 1987. His intent was to introduce a distributed behavioral
model which would allow for the efficient simulation of the
flocking behavior found in a wide range of natural animals,
including flocks of birds, schools of fish, and crowds of
humans [1]. Each individual in the simulated flock is a single
boid, and the distributed behavioral model approach means
that rather than having to predefine the path of each boid
to produce a convincing flocking behavior, one could simply
assign a set of rules to each of the individuals that relate the
individual to its surroundings, and believable flocking behavior
would emerge from the collective. At their core, these rules
define three goals which each boid would strive to achieve:

alignment, which is matching its velocity with other nearby
boids; cohesion, which is keeping itself both near to and
surrounded by other boids; and separation, which is avoiding
collisions or sharing the same space with other boids.

There are a number of various parameters that can go into
the formulation of these rules and the boids’ goals. One can
manipulate how far away a boid can be while considered a
‘nearby’ boid, the importance of each of the different goals
by weighting their influence on the boid’s behavior, or how
quickly the boid is able to accelerate and respond to changes
in its environment. As such, the flight behaviors of boids lend
themselves quite readily to being manipulated and optimized
through genetic and evolutionary approaches, allowing us to
explore the space of possible ‘species’ of boids and fine-tune
those parameters to select for a certain kind of behavior.

B. Related Works: Boid Evolution

Given the common philosophies regarding the development of
algorithms based upon natural exemplars, it is no surprise that
the intersection of evolutionary algorithms and boids, a prime
example of artificial life, have been explored before.

Neural networks have been evolved which are capable of
learning flocking behavior using the sensors and activators on
swarm robots by evaluating fitness using metrics motivated
by Reynolds’ original rules. These results found that the
alignment behavior is not strictly necessary for individuals in
a swarm to flock together and that the separation and cohesion
forces are sufficient, but also that these rules are most effective
when these metrics can be evaluated globally over the entire
swarm, rather than just locally over the nearby neighbors for
each individual [2].

Flocking behavior has been capable of evolving from rela-
tively few features, such as a neural network which controls
the movement of individuals in a swarm that are capable
of signaling to each other with a single simple signal with
an intensity ranging between 0 and 1. When the signaling
behavior is enabled between individuals, their population is
capable of evolving to swarm around a sustaining food source,
while the silencing of the signal leads to erratic behavior and
a population which dies out [3].

C. This Work

Although it has been suggested that the Reynolds implemen-
tation of flocking behavior in the boids model is somewhat
simplistic and that we should define artifical life in such a
way that the boid model is an explicit subset of artificial
behavior [4], we approach this problem using Reynolds’
original formulation of the boids model. We seek not to evolve
Reynolds’ rules based on neural networks and some available
mechanism, but rather to explicitly implement Reynolds’ rules
and then optimize the parameters that specify the relation-
ships between these rules. Our goal is to evolve a species
of boid which is capable of most consistently satisfying a
group a classifiers which have been previously trained to
identify human perceptions of swarm behaviors labeled as
‘Aligned,’ ‘Flocking,’ and ‘Grouped.’ Our hope is to evolve
a species of boid that is most likely to be recognized (by this
classifier) as exhibiting these swarm behaviors and identify
which evolutionary algorithm was most capable of or effective
for achieving this goal.

In the rest of this work, we formulate our problem and
the fitness function that we will use to evaluate a given
species of boid in section III. We then discuss the various
approaches that we will explore and compare in section IV,
and present the results of these various evolutions in section V.
We then compare these results and discuss which method most
effectively evolved the best boid species and the obstacles that
have been discovered in section VI.

III. FORMULATION OF THE PROBLEM

In order to evolve a species of boid which will most exhibit
the flocking behavior, we must first formulate the problem as
an evolutionary computation problem.

To avoid confusion throughout the discussion, it is important
the we establish and clarify the terms that will be used.
During our evolution, the individual genotypes that we will be
evolving and their associated phenotypes that will be evaluated
are what we call a species of boid, i.e., a representation of
a specific behavior and the type of boid which exhibits that
behavior. This representation of behavior will be given to
our simulation, which creates many instances of boids which
are members of this species and evaluates their collective
behavior as a swarm. Traditionally, evolutionary algorithms
are evolving individuals, and the term population references
something which exists within the evolutionary structure. For
this problem, however, one could also refer to a single boid as
an individual and the swarm that it is a part of as a population.
It is important to avoid this confusion, so we establish here that
our evolutionary algorithms seek to develop an ideal species
of boids, not an ideal individual boid.

A. The Species Individual

During our evolution, each potential species of boid will be
represented as a list of 6 float values. These values represent,
in order:

1) Alignment Weight: This is the multiplicative weight
given to the force of alignment in determining an in-
dividual boid’s acceleration.

2) Separation Weight: The same as above for the force of
separation.

3) Cohesion Weight: The same as above for the force of
cohesion.

4) Alignment/Cohesion Radius: This is the maximum sep-
aration between two boids for the boids to consider each
other in their calculation of their alignment and cohesion
forces.

5) Separation Radius: The same as above for the force of
separation.

6) Maximum Acceleration: This is the maximum magni-
tude of the acceleration vector for a single boid.

For the evolutionary strategy approaches discussed in sub-
section IV-B. Evolutionary Strategies, these float values will be
accompanied by an additional 6 float values which represent
their correlated mutation values.

B. The Simulation

Our boid simulation is modified for our purposes from a
simulation made available by Nicolas Rougier [5]. While an
effective simulation, each of the parameters which define the
behaviors of the boids that we are concerned with are hard-
coded with values. To make this simulation effective for our
purposes, we modified the initialization of a flock of boids
such that it would accept various parameters, including the list
of parameters which specify a particular species. We further
modify the simulation to record data about the flight of the
boids in preparation for passing the relevant information about
the simulation to our classifiers, discussed in the next section.

In addition to this ability to simulate various kinds of
boids and record data, efforts were made to accelerate the
simulation. Given the relatively large number of boids that
are expected to be in the flock by our classifiers and the
number of simulations that must be run in order to complete
our evolutionary algorithm, this step was vital in order to have
a fitness function that could be run reasonably quickly. To
this end, we utilize the grid search algorithm GriSPy in order
to rapidly find all neighbors within a fixed-radius of a given
boid [6].

We also update the visualization of the boid information
when plotted such that each boid appears as an arrow scaled
to its current velocity. Although this has no effect on the
simulation or evolution itself, it is very helpful for human
visualization and developing an understanding of the behaviors
that are evolved, especially when considering stills of a boid
swarm which can be seen later in the work in Figs. 13-16.

C. The Classifier

The classifier that is being utilized in our fitness function is
one that was trained in part by a subset of the current authors
for the purpose of identifying during which time-instances a
sample swarm of boids is exhibiting ‘Aligned’, ‘Flocking’,

and ‘Grouped’ behaviors [7]. The classifier was trained using
the Swarm Behavior Data Set uploaded by researchers at
the University of New South Wales to the UCI Machine
Learning Repository [8], [9]. Although certain methodological
concerns about the collection of the original data set are
raised throughout the training of the classifier, notably the
open survey method in which class labels were generated,
reasonable results were obtained, and we are hopeful that the
classifier should prove fruitful as a heuristic measure of the
expression of boid swarm behaviors [10].

We utilize a random forest classifier for each of the three
behaviors, which have been optimized using a 10-fold cross
validation grid search over parameters such as maximum
depth, number of estimators, etc., and we choose the minimum
number of training samples required to achieve 95% or higher
accuracy. We minimize the training samples since we expect
generalizability of these models to other boid simulations to
be our primary limitation.

D. The Fitness Function

Having established to components of our fitness function, we
are now prepared to discuss the fitness evaluation of any given
species of boid.

Our simulation receives a random seed and a specification of
the particular boid species in question. When applicable, this
random seed is uniform for a whole generation of evaluations
in order to evaluate the new boids on similar footing. The
simulation then initializes 200 boids in random positions with
random velocities (within a maximum) and allows them to
begin the flight according to their behavior parameters. The
simulation will run for 25 frames, at which point it will begin
to collect the statistical data about the flock at every time-
instance. After another 200 frames, the simulation will halt,
and the recorded information will be passed to the classifier
for classification.

The classifier classifies each time-instance based on the
statistical information provided and outputs either a 0 or a 1
for each of the 3 behaviors (‘Aligned’, ‘Flocking’, ‘Grouped’),
indicating either a negative or a positive classification for
the given behavior. The total number of positively classified
instances for each of the 3 behaviors are then summed together
with a weighting that depends on the progress of the evolution
(discussed below) and divided by the maximum possible
score. The value that is returned is between 0.0 and 1.0
and represents the percentage of the ideal possible fitness,
which would correspond to expressing all behaviors for every
instance of recorded simulation.

Given the results of initial experimentation, we find that a
straight-forward summation of scores for each behavior will
not provide optimal results. It seems that the ‘Flocking’ and
‘Grouped’ classifiers and far easier to satisfy than the ‘Aligned’
classifier. As such, individuals quickly optimize these two
behaviors, while neglecting the other, leading to a take-over of
species with a fitness breakdown of [0.0, 1.0, 1.0] for the three
behaviors. In order to address this limitation, we introduce a

3-phase fitness function.
The first phase is in effect during the first third of total eval-

uations. During this phase, only the alignment behavior, the
one which seems often neglected, is selected for. Performance
based upon the other behaviors is ignored, in hopes of filling
the population with individuals that are able to score well for
alignment.

The second phase occurs during the middle third of eval-
uations and begins to consider the other behaviors, but still
heavily weights alignment. Two-thirds of the weight is given
to alignment, with the other behaviors splitting the other one-
third of the weight. We also introduce an overall weighting
onto the fitness for an individual. This weighting takes into
consideration the overall difference between the fitness scores
of each behavior, and can be defined as such:

w ≡ 1

1 + 4 (d (F))
(1)

where F is a triple [a, f, g] such that a, f, and g are
the fitness scores for the ‘Aligned’, ‘Flocking’, ‘Grouped’
classifiers, respectively, and

d(F) ≡
∑
x,y∈F

|x− y|, (2)

which measures the total difference between the elements of
a given detailed fitness measure.

This weighting is defined such that a behavior-detailed
fitness score F will be given a weight of 1.0 when all three
behaviors receive the exact same score and be given a weight
of 1/9 if the scores are as different as possible, either by
neglecting or optimizing only one behavior, or assigning the
values 0.0, 0.5, and 1.0 to the three behaviors. The intent here
is to punish the optimization that the evolution tends towards in
hopes of keeping the individuals which satisfy the ‘Alignment’
classifier from being pushed out of the population.

The final phase occurs in the last third of the evaluations.
This phase weights each behavior equally, but continues to
weight the overall fitness using eq. 1. Our hope is that in this
phase, the population will be able to evolve towards a global
optima in which all three behaviors are maximized to 1.0.

While we were able to accelerate a single simulation for a
given species, the simulation still takes approximately 10−15
seconds to operate on a powerful personal desktop. With the
number of fitness evaluations for a single evolutionary run
on the order of 104, the computational time for this fitness
function is still potentially prohibitively expensive for explo-
ration of models. As such, when possible, fitness evaluations
are run in parallel in order to allow a greater number of
fitness evaluations to be completed in a given clock time.
Unfortunately, this approach does not improve the execution of
the steady state algorithm discussed in subsubsection IV-A2.
Steady State GA, and we perform that evolution using 103

evaluations instead.

IV. GENETIC AND EVOLUTIONARY APPROACHES

We provide a brief overview of each of the algorithms tested
and discuss the particular features selected for our problem.
The algorithms included in this work are generational genetic
algorithm, steady state algorithm, (µ, λ) evolutionary strate-
gies, and (µ+ λ) evolutionary strategies.

Throughout the algorithms, we universally use a population
size of 100, a probability for crossover of 90%, a probability
for mutation of 30%, and a limit on the total number of fitness
evaluations of 10, 000, excepting the steady state genetic
algorithm, which is limited to 1, 000 evaluations due to limits
on the parallelization of fitness evaluations.

Individuals of the population are randomly initialized from
a continuous uniform distribution with the following bounds
for each of the six dimensions of each individual:

Parameter Range
Alignment Weight [0.01, 2.00]
Separation Weight [0.01, 2.00]
Cohesion Weight [0.01, 2.00]

Alignment/Cohesion Radius [100.00, 300.00]
Separation Radius [100.00, 300.00] and ≤ A/C Radius

Maximum Acceleration [0.01, 5.00]

resulting in a chromosome structure for the genetic algo-
rithm approaches as follows:

〈x0, . . . , x5〉 . (3)

For the evolutionary strategy approaches, the six mutation
step sizes σi are randomly initialized from a continuous
uniform distribution with bounds as a function of the cor-
responding parameter dimension i according to the following
formula:

σi ∈ [0.5 min (i) , 0.2 max (i)] . (4)

This results in a chromosome structure for the evolutionary
strategy approaches as follows:

〈x0, . . . , x5, σ0, . . . , σ5〉 . (5)

A. Genetic Algorithms

1) Generational GA
In a generational GA, if the population size is P, then every

iteration P offspring are created and mutated from the original
population to replace them for the succeeding generation. The
first defining attribute of our generational GA is the inclusion
of elitism. Before any reproduction happens, the two best
individuals are copied over to the next generation. This is to
combat the inherently explorative nature of a generational GA.

For the rest of the offspring population, a selection tourna-
ment of five random individuals from the current generation
are evaluated and the top two performers are recombined with
one-point crossover, and both resulting children are subject to
gaussian mutation at a 30% chance and added to the offspring
population. This tournament is executed until the number of
produced children is equal to the population size subtracting
two, in order to account for the two elitist individuals. Then the

Fig. 1: A flowchart detailing the process of a generational GA.

current population is discarded, and the offspring population
becomes the next generation’s population. The only survivors
from generation-to-generation are the two elitist individuals.

2) Steady State GA
Steady state generational algorithms are a conservative ap-

proach to population manipulation and individual replacement.
In steady state algorithms, there are no generations in the
general sense, as each generation retains a majority of the
exact same individuals with only a few replacement children.
These children are created from the best two parents at the end
of an epoch and the best of the two parents and two children
are added back into the unchanged population.

In our experimentation, our algorithm instead takes the two
generated children from the best individuals and replaces the
worst two individuals of the population. This methodology
may seem too radical for steady state algorithms, but due
to limited testing time and computational power, an elitist

Fig. 2: A flowchart detailing the process of a steady state GA.

methodology was necessary to get results from this algorithm
that are comparable to the rest. The elitest strategy also
uses aggressive mutation in children to discover optimal boid
parameters. Specifically, a mutation probability of 0.6 for both
index shuffling and Gaussian mutation creates diverse children
to speed up the process of the steady state algorithm.

B. Evolutionary Strategies

For both evolutionary strategy approaches, λ parents are
uniformly randomly selected from the µ individuals of the
population. A blend mutation operator is used in the crossover
step. This operator proceeds by taking the weighted sum of the
two parental alleles of each gene, according to the following
formula:

child1 = 〈αxi + (1− α) yi|0 ≤ i ≤ 11〉
child2 = 〈αyi + (1− α)xi|0 ≤ i ≤ 11〉

(6)

where α = 0.33 and xi and yi represent the ith allele of
parent x and y, respectively.

An uncorrelated mutation with 6 step sizes is used. The
use of 6 independent mutation step sizes allows for each
dimension of the boid species to be treated separately. The
motivation for this separation lies in the observation that the
fitness landscape of our solution space may have a different
slope in one direction (e.g. along the alignment weight axis)
than in another direction (e.g. along the separation radius axis).

In this mutation strategy, first, each mutation step size, σi,
is mutated by multiplying it by a term eΓ where Γ is the sum
of a common base mutation (random variable drawn from a
normal distribution with mean 0 and standard deviation τ ′)
and coordinate-specific mutation (random variable drawn from
a normal distribution with mean 0 and standard deviation τ).
We the mutate each allele, xi by multiplying it by a random
variable drawn from a normal distribution with mean 0 and
standard deviation σi. The mutation mechanism is specified as
follows:

σ′
i = σie

τ ′N(0,1)+τNi(0,1)

x′i = xi + σiNi (0, 1)
(7)

where τ ′ = 1√
2n

and τ = 1√
2
√
n

. In these formulas,

N (0, 1) denotes a draw from the standard normal distribution,
while Ni (0, 1) denotes a separate draw from the standard
normal distribution for each variable i. The mutation operator
was used with a 1/6 probability of mutation for each attribute
to be mutated, meaning that for an individual selected for
mutation, that individual will, on average, have one of its six
alleles (and corresponding mutation step size) mutated.

An elite selection strategy (choosing the µ highest fit
individuals) is used. The (µ, λ) and (µ+ λ) strategies simply
differ in the set from which the µ highest fit individuals are
chosen. In the (µ, λ) approach, the µ highest fit individuals are
chosen only from the λ generated children after crossover and
mutation. In the (µ+ λ) approach, the µ highest fit individuals
are chosen from the union of the individuals from the previous
generation and the λ generated children after crossover and
mutation.

Our evolutionary strategy algorithms are run a number of
times using different ratios between µ and λ. We perform runs
where λ = 3, 5, and 7µ for both approaches, and run λ = 9µ
for (µ+ λ) only, primarily due to time constraints.

V. RESULTS

A. Genetic Algorithms

1) Generational GA
The generational genetic algorithm was able to achieve a

score of 0.0813 after 102 generations. Of interest is the clear
distinction between the maximum and average fitness values

Fig. 3: A flowchart detailing the process of an evolutionary
strategy approach. Both (µ, λ) and (µ+ λ) can be described
by this chart, differing only in the set from which survivor
selection is performed.

throughout. It will be seen in our other methods that the
average fitness often converged quickly with the maximum
fitness and diversity in score rapidly decreased. This is not
the case for the generational algorithm, which also produced
some of the most sharp increases in fitness of our methods.

2) Steady State GA
The steady state algorithm was run for 535 epochs and

achieved a best fitness of 0.0747. The algorithm was largely
stagnant until reaching phase 2 of the fitness evaluations. The
population quickly converged over 50 epochs to the maximum
fitness of 0.037 . This behavior repeated in phase 3, with the
algorithm failing to significantly improve the fitness beyond
trivial solutions. At this point, the steady state algorithm

Generational GA

Fig. 4: A graph of the maximum and average fitnesses of the
generational genetic algorithm. Notice the consistent differ-
ence between the maximum and the average fitness values.

Steady State GA

Fig. 5: A graph of the maximum and average fitnesses of
the steady state genetic algorithm. This method provided the
slowest convergence towards the populations maximum fitness
of all the methods.

reached a perceived ceiling of 0.0747 fitness, the value for
our trivial solutions. See Fig. 5 for the plot of the evolution.

B. Evolutionary Strategies

1) (µ, λ) Approach
Overall, the (µ, λ) approach has little success on this

problem. See Figs. 6-8 to see plots of their evolution. While
these methods do occasionally have success improving the
maximum fitness of the population during a single phase of
fitness evaluations, the inherent forgetfulness of this method
rapidly loses track of successful individuals and falls back

(µ,λ) where λ = 3µ

Fig. 6: A graph of the maximum and average fitnesses of the
(µ, λ) evolutionary strategy for λ = 3µ. This method was
able to find early successful individuals, but due to the (µ, λ)
approach, quickly lost these good individuals.

(µ,λ) where λ = 5µ

Fig. 7: A graph of the maximum and average fitnesses of the
(µ, λ) evolutionary strategy for λ = 5µ. This method had
no success finding successful individuals outside of the easy
optima that our fitness function was designed to avoid. Notice
the nearly identical maximum and average fitness curves.

into the trivial solutions. It is interesting to note that the most
success during phase 1 of evaluations was found with a low
value for λ, suggesting that producing too many offspring
from the population could ultimately be detrimental under this
approach for optimizing alignment.

2) (µ+ λ) Approach
The results of the (µ+ λ) approach proved to be our most

successful and are depicted in Figs. 9-12. The best fitness value
found by this method was 0.0813 from λ = 9µ, which is the

(µ,λ) where λ = 7µ

Fig. 8: A graph of the maximum and average fitnesses of the
(µ, λ) evolutionary strategy for λ = 7µ. This method had
an early success similar to 6 with another brief increase in
max fitness during phase 2, but also failed to maintain good
individuals.

(µ + λ) where λ = 3µ

Fig. 9: A graph of the maximum and average fitnesses of the
(µ + λ) evolutionary strategy for λ = 3µ. This method had
little success optimizing the boids. Note a slight lag in the
average fitness converging to the population maximum fitness.

highest of all of our methods, and the second and third best
were found by λ = 5µ and λ = 7µ, respectively. The results
showed that this method was in fact capable of improving
the performance of individuals during both the initial and
final phases of fitness evaluations and ultimately returning the
individuals that most satisfied our fitness function..

(µ + λ) where λ = 5µ

Fig. 10: A graph of the maximum and average fitnesses of the
(µ + λ) evolutionary strategy for λ = 5µ. This method was
more capable of finding potentially fit individuals in the early
phase of the evolution and acheived a higher overall fitness
than λ = 3µ.

(µ + λ) where λ = 7µ

Fig. 11: A graph of the maximum and average fitnesses of the
(µ + λ) evolutionary strategy for λ = 7µ. This run seems to
have been unsuccessful in finding less trivial fit individuals.

VI. DISCUSSION

Overall, we find little success in optimizing boid behavior
such that it expresses all three behaviors for which we have
classifiers. Despite this lack of success, it is important to
note that the fitness function is deceptively low, for it heav-
ily punishes any difference in fitness for each of the three
behaviors. Our algorithms often find individual species with
a behavior-detailed fitness of [0.0, 1.0, 1.0], optizing 2/3 of
the behaviors, yet receiving a score of 0.0747. Our attempt to

(µ + λ) where λ = 9µ

Fig. 12: A graph of the maximum and average fitnesses of
the (µ + λ) evolutionary strategy for λ = 9µ. This method
performed the best, achieving the best fitness scores for each
of the three phase of fitness evaluations.

modify the fitness function and dynamically change it based
on the number of evaluations that have been completed was
largely unsuccessful.

We do note that the (µ+λ) evolutionary strategy approach
seems to have had the most success in developing promising
individuals, as 3 of the top 4 individuals came from this
method. One might initially expect a (µ, λ) approach to out-
perform given our dymanic fitness function, but the changes
to the fitness function are relatively infrequent. Further, the
ability to hold onto a good region of the search space when
it has been found seems crucial for this problem. While the
generational algorithm was able to achieve the same maximum
score, the abrupt changes in fitness suggest that this score may
have ultimately resulted from lucky population and mutations.
The steady growth of the evolutionary strategy suggests a more
reliable performance over many runs.

We note in Table I that many of the best individuals found
in our evolutions have significantly different parameters for
behavior. This suggests that the best regions of the search
space that are being found are relatively flat and spread out.
There are many possible points in the search-space with the
same fitness, without much variability in the fitness values.

Score Align. Sep. Coh. A/C Rad. Sep. Rad. Max Accel.
0.081 1.58 0.477 2.00 107.5 107.5 5.00
0.081 1.61 0.353 2.00 154.0 145.0 5.00
0.078 1.18 0.228 1.93 211.4 211.4 4.72
0.076 0.966 0.410 1.70 300.0 218.9 3.47

TABLE I: The top four individuals found in our evolutions
and their parameter values.

We also note that, while our best individuals were those
that most satisfied the classifiers and consequently our fitness
function, they do not accurately represent flocking behavior

in a qualitative way. See Figs. 13-15 for a sample of swarms
using these behaviors in midflight. One would be hard pressed
to identify these species as flocking, especially when compared
to a boid species designed by hand, as depicted in Fig. 16.

1st Place Species

Fig. 13: A mid-flight sample of our best individual. Notice a
heavy clustering of the 200 boids into very tight groups.

2nd Place Species

Fig. 14: A mid-flight sample of our second best individual.
Notice again heavy clustering, along with a tendency for small
groups to fly in tight circles.

The above comments combined with our lack of success
with a range of methods and the overall difficulty of this
problem suggests two possibilities to the authors.

The first is that the region in the space of potential boid
species in which a swarm will satisfy the alignment classifier

3rd Place Species

Fig. 15: A mid-flight sample of our third best individual.
Similar heavy clustering with a single-file tendency.

A Custom Species

Fig. 16: A mid-flight sample of a species quickly built to
flock. This significantly outperforms our evolved species from
a qualitative standpoint.

very small and perhaps deceptively structured or scattered.
This would explain the incredible difficulty that the algorithms
seem to have not only finding species which score well with
that classifier, but also finding descendents of these species that
better satisfy the classifier. The regions of boid-space which do
not satisfy the flocking and grouped classifiers seem to have a
similar structure, making the optimization of these behaviors
relatively trivial.

The other suggestion is that there are issues with the

classifiers and their ability to accurately classify boid behavior.
There are significant concerns noted by Liu et al. regarding
the methodology with which the training data was generated,
as well as concerns of generalizability throughout the training
process. In part, our work sought to confirm the validity of
their classifiers on an unseen collection of boid behaviors, and
it seems that their attempts to remedy issues of generalizability
failed. Many of the species explored by our algortihms do
well expressing the behaviors of concern to human eyes, yet
the classifier scores them poorly. Alternatively, as depicted
in Figs. 13-15, some of the most successful species found
behave in ways that do not reflect natural flocking behavior,
such as heavily clustering, flying in circles, and jittering back
and forth. This suggests that the classifiers do exploit attributes
of the original data set for their models, and the evolution has
learned to exploit these models in turn. Perhaps this work
could be attempted again following further development of
their classifiers as suggested by those authors [7].

It is also interesting to note that the species that are evolved
by our algorithms most often disregard success based upon the
alignment algorithm. This seems to echo lessons learned from
Ramos et al.’s study which found that the alignment metric
was ultimately unnecessary to produce qualitative flocking
behavior [2]. Perhaps this insight suggests that success with
the alignment classifier is ultimately unnecessary for the
underlying goal of evolving realistic boid flocking.

VII. CONCLUSION

After developing a fitness function based on pre-trained classi-
fiers in order to score species of boids based on their ability to
express the behaviors ‘Alignment’, ‘Flocking’, and ‘Grouped,’
we find that evolutionary methods seem to simply exploit
overfitting issues within the classifiers and do so in a way that
does not easily reach an optimal individual. The formulation
of this problem, particularly the reliance upon classifiers for
which generalizability is already a concern, make this an
incredibly difficult problem. That said, we note that the (µ+λ)
evolutionary strategy approach seems to be the best method
for the problem, due to its ability to remember successful
individuals that have been found in previous generations.

Moving forward, this project would best be revisited follow-
ing imporovements made to the classifiers as discussed in Liu
et al. as discussed in their work from which the classifers were
taken. It seems that the issues of overfitting on the original
training data and the issues inherent to those data create very
large and flat local optima or plateaus in the fitness function,
which the evolutions struggle to reach past.

Given a more appropriate classifier, it would also be worth
running this experiment multiple times. Given time constraints
and the complexity of the fitness function, these results were
produced from a single run of each method. Considering the
stochastic nature of evolutionary algorithms and their success,
any definite claims about performance would require a more
comprehensive and statistical analysis of the methods.

It should also be noted that the goal of this problem, evolv-

ing optimal boid parameters to express flocking, inherently
imposes a rather slow method onto the creation of a species
of boid which successfully flocks. For practical purposes, it is
much more cost and time effective to craft boid parameters by
hand to satify the flocking requirements. That said, success in
this problem could be enlightening to further study of swarm
behaviors and the application of evolutionary algorithms to
difficult problems.

REFERENCES

[1] C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral
model,” 1987.

[2] R. P. Ramos, S. M. Oliveira, S. M. Vieira, and A. L. Christensen,
“Evolving flocking in embodied agents based on local and global
application of reynolds’ rules.,” PLoS ONE, vol. 14, no. 10, 2019.

[3] O. Witkowski and T. Ikegami, “Emergence of swarming behavior:
Foraging agents evolve collective motion based on signaling.,” PLoS
ONE, vol. 11, no. 4, pp. 1 – 26, 2016.

[4] I. L. Bajec, N. Zimic, and M. Mraz, “The computational beauty of
flocking: boids revisited,” Mathematical and Computer Modelling of
Dynamical Systems, vol. 13, no. 4, pp. 331–347, 2007.

[5] N. P. Rougier, From Python to Numpy: Version 1.1. Zenodo, Dec. 2016.
[6] M. Chalela, E. Sillero, L. Pereyra, M. A. Garcı́a, J. B. Cabral, M. Lares,

and M. Merchán, “Grispy: A python package for fixed-radius nearest
neighbors search,” arXiv preprint arXiv:1912.09585, 2019.

[7] Z. Liu, R. McArdle, and G. Orlando, “Classifying the behaviors of boid
swarms,” Unpublished; available upon request, 2020.

[8] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[9] S.Abpeikar, K. Kasmarik, M. Barlow, and M. Khan, “Human perception

of swarming: Swarm behaviour data set,” 2020.
[10] S.Abpeikar, K. Kasmarik, M. Barlow, and M. Khan, “Human perception

of swarming,” 2020.

	Abstract
	Introduction
	Boids
	Related Works: Boid Evolution
	This Work

	Formulation of the Problem
	The Species Individual
	The Simulation
	The Classifier
	The Fitness Function

	Genetic and Evolutionary Approaches
	Genetic Algorithms
	Generational GA
	Steady State GA

	Evolutionary Strategies

	Results
	Genetic Algorithms
	Generational GA
	Steady State GA

	Evolutionary Strategies
	(,) Approach
	(+) Approach

	Discussion
	Conclusion
	References

