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Abstract—The current zeitgeist in artificial intelligence is one
dominated by the application of artificial neural networks to
solve a wide range of problems. However, their proliferation has
brought to the forefront many concerns regarding our ability to
understand and ultimately trust these networks that we so often
employ in our decision making processes. We must develop meth-
ods which allow us to faithfully and efficiently audit our neural
networks, and it appears that such a method may be feasible
within Restricted Boltzmann Machines. A Restricted Boltzmann
Machine is a statistical, energy based artificial neural network
architecture which represents a joint probability distribution over
the data with which it is trained, which can then be used to infer
likely values for data that are missing or undefined in the training
set. It has been shown that knowledge bases of propositional
logic can be associated with a Restricted Boltzmann Machine
which, once trained on the knowledge base, can identify with
tractable computational complexity the truth value assignments
which are models of said knowledge base. We explore here the
properties of propositional logic when encoded into Restricted
Boltzmann Machines in order to understand the behaviors of
this new logic. We show that this method will faithfully recreate
each of the explored properties of classical propositional logic
in a connectionist network. This method presents a promising
path forward for connectionist logic programming and suggests
the possibility of representing more descriptive and abstracted
logics.

Index Terms—Knowledge representation, Artificial neural net-
works, Unsupervised learning, Statistical learning, Logic pro-
gramming.

I. INTRODUCTION

The current zeitgeist in artificial intelligence is one dominated
by the application of artificial neural networks (ANNs) to solve
a wide range of problems. The amount of data and large-scale
parallel processing power widely available in modernity makes
the training of these networks quite efficient compared to any
attempts of previous decades. However, their proliferation has
brought to the forefront many concerns regarding our ability
to understand and ultimately trust these networks that we so
often employ in our decision making process. These networks,
due to their complicated structure modeling a massively high-
dimensional space, are quite opaque to human interpretation
and audit.

There have been advancements made in recent years to ad-
dress this issue, however correcting our lack of understanding

regarding a deep network’s inner workings is still a major
concern for the field [1], [2]. In general, it is quite difficult
for a human to interpret how a trained ANN processes the
provided data in the way that it does, or to construct one
that will process data via some intended methodology. This
can make it difficult to understand what metrics the ANN
might be using in its decision process and, when trained on
historical data that has been shown to be discriminatory, the
ANN will simply replicate these human metrics that can have
major impacts on people’s lives [3]. As the field continues to
apply ANN methods, we must develop methods which allow
us to faithfully and efficiently audit our ANNs to ensure that
their operation remains both under our control and within
our approval. It appears that such a method may be feasible
within Restricted Boltzmann Machines (RBMs) and their deep
learning counterpart Deep Belief Networks (DBNs).

II. BACKGROUND AND RELATED WORKS

A. Restricted Boltzmann Machines

An RBM is a statistical, energy based ANN architecture
which, following an unsupervised training process, represents
a joint probability distribution over the training data. This
distribution can then be used to infer likely values for data
that are missing or undefined in the training set [4].

The graphical structure of a Boltzmann Machine consists
of two layers of nodes, a “visible” layer and a “hidden”
layer. In the Restricted Boltzmann Machine, nodes contained
in one layer can be connected only with the nodes contained
in the other layer, and all connections between nodes are
bidirectional [4]. This restriction offers a significant advantage
with regards to the overall computational complexity of the
structure, while still allowing one to create faithful models of
the input data [5].

Associated with each RBM is a function known as the
energy:

E(x,h) = −
∑
i,j

wijxihj −
∑
i

aixi −
∑
j

bjhj (1)

where (x,h) represents an assignment of values to each node
of our machine, ai and bj are the biases of visible and hidden



nodes xi and hj respectively, and wij is the connection weight
between nodes xi and hj . From this energy function, we
can determine the joint probability distribution of assignment
(x,h):

p(x,h) =
1

Z
e−

1
τ E(x,h) (2)

where
Z =

∑
x,h

e−
1
τ E(x,h) (3)

represents the partition function over all distributions, with
‘temperature’ τ [5].

This partition function in general can be quite expensive
to compute explicitly. However, given any initial state of the
nodes, the minimized energy function of an RBM can be
approximated arbitrarily well through a tractable Markov chain
Monte Carlo process of alternatively resampling the values of
both hidden and visible nodes in an iterative process known as
Gibbs Sampling [6]. As real-valued RBMs and the necessary
computational methods for minimizing intractible partition
functions are outside of the scope of this work, the reader is
directed towards [4] and [6] for an introduction to the Gibbs
Sampling process and its use in training RBMs.

A standard use of the RBM structure interprets visible nodes
as corresponding with training data while the hidden layer
would express a level of abstraction corresponding to some
shared feature of elements of the input data. Once trained, the
architecture will represent a joint probability distribution over
a potentially incomplete dataset and can then fill in the data
set by sampling from the probability distribution [4].

This application has gained attention in recent years when
used with the Netflix data set to predict user’s movie ratings
better than Netflix’s own algorithm [7]. This application cre-
ated visible nodes whose values represented a user’s ratings for
movies, both known and unknown, and hidden nodes which
would represent hidden features shared by movies (inclusion in
certain genres, sharing directors or actors, etc.). The algorithm
could then predict the user’s ratings for unrated movies, filling
in the values of missing data points in the input set.

B. Deep Belief Networks

A Deep Belief Net (DBN) is a neural network architecture in
which multiple RBMs are stacked onto one another such that
the hidden nodes of one RBM act as the visible nodes of the
next. While DBNs do suffer from being more computationally
complex and their conditional probabilities may be more
difficult to compute exactly, they benefit from being able to
leverage the multiple levels of RBMs in order to model the
data at higher levels of abstraction [8]. This makes this struc-
ture particularly effective and robust in classification problems,
in which it can leverage ontological classification information
which can even be transfered between networks [9], [10]. This
ontic approach allows for great modularity in the application
of these networks and an ability to benefit from prior training
for a range of problems, rather than needing to fully retrain
each time the problem is adjusted. It is therefore the author’s

hope that a proof of concept for a faithful representation of
propositional logic in a single RBM layer could prompt work
with deeper networks, potentially representing logics with a
higher potential for abstraction and expression.

C. Knowledge Representation in RBMs and DBNs

It has been shown in [5] that a knowledge base expressed in
propositional logic, when decomposed into a ‘Strict Disjunc-
tive Normal Form’ (SDNF) in which at most one conjunctive
clause holds given an assignment, can be associated with an
RBM whose visible nodes correspond to the literals of the
knowledge base, whose hidden nodes correspond to the clauses
of the SDNF, and whose energy function is determined by
the SDNF. The states of the RBM which minimze the energy
function are shown to correspond to valuations which will
satisfy the knowledge base if it is consistent or provide a
maximum satisfiability in the case of weighted logics. It has
further been shown that this process can be implemented in
reverse in a DBN, isolating a single RBM layer and reverse
engineering a logical expression which represents the nodal
relationships in said layer and allowing for a process of
knowledge extraction from the DBN [8].

The author of [5] points out that while SDNF is more
complex and demanding to compute than the normal DNF,
which is generally quite expensive, this process is efficient for
logical implications. As many knowledge bases are already
presented in the form of facts and logical implication rules,
there is promise that this method could be tractable for real-
world knowledge bases. Further, the number of nodes in the
RBM associated with a logical implication grows linearly with
the number of literals in the implication, so the entire process,
including conversion to SDNF, representation as RBM, and
Gibbs Sampling to train the RBM, should be tractably efficient
in the case of real-world knowledge bases.

III. LOGIC REPRESENTATION IN RBMS

We reproduce here the important theorems of [5], which will
be the basis for our analysis of the RBM encoded logic.

A. Strict Disjunctive Normal Form

Definition 3.1. [5]

• A “strict DNF” (SDNF) is a DNF where at most one
single conjunctive clause is True at a time.

• A “full DNF” is a DNF where each variable must appear
at least once in every conjunctive clause.”

The author claims that any propositional well-formed for-
mula can be presented as a full DNF which is also an SDNF
and further provides a proof of and process for converting a
general logical implication into this form.

Theorem 3.2. [5] A logical implication y ←
∧

t∈ST

xt ∧∧
k∈SK

¬xk where ST , SK respectively are the sets of positive



and negative propositions’ indices, can be represented as an
SDNF having the form:(

y ∧
∧

t∈ST

xt ∧
∧

k∈SK

¬xk

)
∨

∨
p∈ST∪SK

 ∧
t∈ST .\p

xt ∧
∧

k∈SK .\p

¬xk ∧ x′
p


where S.\p denotes a set S where p has been removed, and
x′
p ≡ ¬xp if p ∈ ST else x′

p ≡ xp.

B. Equivalence of an SDNF and an RBM

In order to represent some WFF ϕ as an RBM, we must first
define what will be considered to be an equivalence between
the two structures:

Definition 3.3. [5] A WFF φ is equivalent to a neural
network N if and only if for any truth assignment x, sφ(x) =
−AErank(x) + B, where sφ(x) ∈ {0, 1} is the truth value of
φ given x with True ≡ 1 and False ≡ 0; A > 0 and B are
constants; Erank(x) = minh E(x,h) is the energy ranking
function of N minimised over all hidden units.

This definition of equivalence guarantees that every pre-
ferred model of a WFF φ would also minimize the energy of
the network N .

We now show that it is possible to map φ to a Symmetric
Connectionist Network (SCN) with an appropriate energy
function.

Lemma 3.4. [5] Any SDNF φ ≡
∨

j(
∧

t∈STj

xt ∧
∧

k∈SKj

¬xk)

can be mapped onto a SCN with energy function

E = −
∑
j

∏
t∈STj

xt

∏
k∈SKj

(1− xk)

where STj
and SKj

are respectively the set of Tj indices of
positive literals and the set of Kj indices of negative literals.

We are now prepared to convert any formula φ into an RBM
using its SDNF.

Theorem 3.5. [5] Any SDNF φ ≡
∨

j(
∧

t∈STj

xt ∧
∧

k∈SKj

¬xk)

can be mapped onto an equivalent RBM with energy function

E = −
∑
j

hj

 ∑
t∈STj

xt −
∑

k∈SKj

xk − Tj + ϵ

 ,

where 0 < ϵ < 1 and STj and SKj are respectively the set
of Tj indices of positive literals and the set of Kj indices of
negative literals.

In particular, we can now present the core result that the
logical implication studied above can be represented by an
RBM.

Theorem 3.6. [5] A logical implication y ←
∧

t∈ST

xt ∧∧
k∈SK

¬xk can be represented by an RBM with the energy

function:

E = −hy

(∑
t∈ST

xt −
∑
k∈SK

xk + y − T − 1 + ϵ

)

−
∑

p∈ST∪SK

hp

 ∑
t∈ST .\p

xt −
∑

k∈SK .\p

xk + x′
p − |ST .\p| − Ip∈SK

+ ϵ


where |ST .\p| is the cardinality of the set ST .\p; if p ∈ ST ,
then x′

p = −xp and Ip∈SK
= 0, else x′

p = xp and Ip∈SK
= 1

IV. ANALYSIS OF RBM LOGIC REPRESENTATION

Here we explore some properties of classical propositional
logic semantics, namely transitivity, ex falso quodlibet (the
“principle of explosion”), disjunctive syllogism, resolution,
and a modified resolution refutation, to see whether they
are faithfully recreated in toy models of the method shown
above, which we will henceforth refer to as RBM Logic.
We will encode preconditions for each of these properties
into RBM Logic, analyze the mathematical behavior of their
energy functions, and interpret the logical consequences of the
preferred valuations appropriately.

A. Transitivity

The property of transitivity is foundational to making chains
of arguments beginning with premises and inferring towards
conclusions. With respect to material implication→, transitiv-
ity is defined:

Definition 4.1. The logical implication → is said to be
transitive if and only if:

KB ⊨ (P→Q) ∧ (Q→R)⇒ KB ⊨ P→R

for any knowledge base KB and sentences P ,Q, and R. This
rule can be expressed syntactically as

P→Q, Q→R

P→R

It can be shown that when represented in RBM Logic, the
property of transitivity for logical implication does hold.

Theorem 4.2. When two logical implications are encoded
into RBM Logic using Theorem 3.5, the defined RBM and
corresponding energy function behave such that the property
of transitivity holds.

Proof. First, we will define our KB to prime the system for
transitivity.

KB ≡ (P→Q) ∧ (Q→R) (4)

We now must show that, using the RBM energy function,
any model of KB is also a model of P→R. First, we convert
(4) to SDNF:



KB ≡ (P ∧Q ∧R) ∨ (¬P ∧Q ∧R) ∨ (¬P ∧ ¬Q) (5)

Using Theorem 3.5 and defining ϵ = 0.5 (we will use this
value for ϵ implicitly throughout this work), we are able to
define an RBM and energy function from (5):

E = −h1(P +Q+R− 2.5)− h2(−P +Q+R− 1.5)

− h3(−P −Q+ 0.5) (6)

We note here that we make use of the more general
Theorem 3.5 rather than the more complex 3.6, which does
deal explicitly with logical implications. This choice has been
made primarily for a consistent application of 3.5 throughout,
which is more naturally employed in the remainder of our
proofs. It is expected that a simple summation of implication
energy functions should serve to represent the conjunction
of implications in a knowledge base, but further analysis is
desired to confirm this.

We now consider the truth value assignments xi which
minimize (6). In general, this process will work for real-valued
or weighted logics. However this is beyond the scope of this
current work and we will simply consider valuations for which
0 and 1 are the possible assignments.

Assignment Energy Functions
xi P Q R Energy Function
x1 0 0 0 2.5h1 + 1.5h2 − 0.5h3

x2 0 0 1 1.5h1 + 0.5h2 − 0.5h3

x3 0 1 0 1.5h1 + 0.5h2 + 0.5h3

x4 0 1 1 0.5h1 − 0.5h2 + 0.5h3

x5 1 0 0 1.5h1 + 2.5h2 + 0.5h3

x6 1 0 1 0.5h1 + 1.5h2 + 0.5h3

x7 1 1 0 0.5h1 + 1.5h2 + 1.5h3

x8 1 1 1 −0.5h1 + 0.5h2 + 1.5h3

TABLE I: Shows truth assignments xi and simplified energy
function (6) for each assignment.

Minimized Energies/Models
xi Minimized Model Transitivity

Energy of KB (P →R)
x1 -0.5 Yes Yes
x2 -0.5 Yes Yes
x3 0.0 No Yes
x4 -0.5 Yes Yes
x5 0.0 No No
x6 0.0 No Yes
x7 0.0 No No
x8 -0.5 Yes Yes

TABLE II: Shows the minimized energy for each assignment
xi, whether the assignment is a model of KB and if transitivity
holds for that assignment.

In Table I, we express the energy functions of each possible
truth value assignment xi. This corresponds to setting each of
the visible nodes of the RBM to a fixed value, and we then
assign values for each hj such that the energy function for that
valuation is minimized. In practice, the range of each of these
functions are a subset of the range of values for the energy

function (6) that will be minimized by sampling for both
the hidden and visible node values through Gibbs Sampling.
Presenting the energy functions for fixed assignments xi

allows us to explore more thoroughly the behaviors of this
method with respect to possible valuations, while still being
able to identify the models associated with global minima.

Once we identify the set of valuations which minimize to
the lowest energy values, the method claims that we have
identified the set of models of KB . In order to prove our
theorem, we must show that transitivity holds in each of these
identified models of KB , i.e. P→R.

Observing Table II, we see that the truth assignments x1,
x2, x4, and x8 all have a minimized energy function value
of −0.5, the lowest of any assignments (note also that this
value is −ϵ). Thus, these assignments would be preferred
in the Gibbs Sampling minimization training process for the
RBM. We also see that these four assignments are the only
assignments which are models of KB , so the minimization
process has properly isolated exactly those truth assignments
which satisfy KB . Finally, we note that for each of these
four assignments transitivity holds, as the sentence P → R
is semantically entailed. We have therefore shown through the
RBM energy function method that KB ⊨ (P →Q) ∧ (Q→
R)⇒ KB ⊨ P→R. ■

B. Ex Falso Quodlibet

The property Ex Falso Quodlibet, also known as the “Principle
of Explosion”, states that from a contradiction, anything can
be derived. Formally:

Definition 4.3 (Ex Falso Quodlibet). The rule of Ex Falso
Quodlibet holds in a logic if and only if:

KB ⊨ (P ∧ ¬P )⇒ KB ⊨ Q

for any knowledge base KB and sentences P and Q. This
rule can be expressed syntactically as

P, ¬P
Q

Theorem 4.4. Ex Falso Quodlibet holds in RBM Logic, such
that in the event of a contradiction, the system will hold no
preference for any valuation and any literal may be posited.

Proof. We first define a contradictory knowledge base:

KB ≡ P ∧ ¬P ∧R ∧ (Q ∨ ¬Q). (7)

We include the literal R to explore the systems response
to literals of our knowledge base well-founded despite the
contradiction. We include the tautology Q ∨ ¬Q to explicitly
include Q as literal of concern and a visible node in our
RBM in order to analyze the systems response to otherwise
unfounded literals.

We now express (7) in SDNF:

KB ≡ (P ∧ ¬P ∧R ∧Q) ∨ (P ∧ ¬P ∧R ∧ ¬Q) (8)



and define our energy function:

E = h1(P −P +R+Q− 2.5)− h2(P −P +R−Q− 1.5).

As we can see, each clause of the SDNF in which the
contradiction holds has the expression P −P included. These
terms will consistently cancel each other out, and our energy
function can therefore be simplified to:

E = −h1(R+Q− 2.5)− h2(R−Q− 1.5). (9)

We now consider the truth value assignments xi which
minimize (9). Note that because P and −P have been re-
moved from our energy function, the only relevant variable
assignments are on Q and R.

Assignment Energy Functions
xi Q R Energy Function Minimized Energy
x1 0 0 2.5h1 + 1.5h2 0.0
x2 0 1 1.5h1 + 0.5h2 0.0
x3 1 0 1.5h1 + 2.5h2 0.0
x4 1 1 0.5h1 + 1.5h2 0.0

TABLE III: Shows truth assignments xi, simplified energy
function (9), and the minimized energy value for each assign-
ment.

Observing Table III, we note that any valuations over Q
and R will provide a minimized energy value of 0.0, i.e. no
preference will be given by the RBM method to any valuations
and any literal may be posited. ■

C. Disjunctive Syllogism

An important rule of inference used in classical logic is that
of Disjunctive Syllogism.

Definition 4.5 (Disjunctive Syllogism). The rule of Disjunc-
tive Syllogism holds in a logic if and only if

KB ⊨ (P ∨Q) ∧ ¬P ⇒ KB ⊨ Q

for any knowledge base KB and sentences P and Q. This
rule can be expressed syntactically as

(P ∨Q), ¬P
Q

.

Theorem 4.6. Disjunctive Syllogism holds in RBM Logic.

Proof. We begin by defining a knowledge base

KB ≡ (P ∨Q) ∧ ¬P

and converting it into SDNF

KB ≡ (P ∧ ¬P ) ∨ (Q ∧ ¬P ). (10)

Using Theorem 3.5, we create an energy function from (10)

E = −h1(P − P − 0.5)− h2(Q− P − 0.5)

and cancel out P − P to get

E = −h1(−0.5)− h2(Q− P − 0.5). (11)

Assignment Energy Functions
xi P Q Energy Function
x1 0 0 0.5h1 + 0.5h2

x2 0 1 0.5h1 − 0.5h2

x3 1 0 0.5h1 + 1.5h2

x4 1 1 0.5h1 + 0.5h2

TABLE IV: Shows truth assignments xi and simplified energy
function (11) for each assignment.

Minimized Energies/Models
xi Minimized Model Disjunctive

Energy of KB Syllogism (Q)
x1 0.0 No No
x2 -0.5 Yes Yes
x3 0.0 No No
x4 0.0 No Yes

TABLE V: Shows the minimized energy for each assignment
xi, whether the assignment is a model of KB , and if Disjunc-
tive Syllogism holds for that assignment.

We now consider possible truth value assignments xi and
identify the valuations which minimize (11).

Observing Table V, we see that x2 is the only valuation with
minimial energy, and it is both a model of KB and assigns Q
a value of True, i.e. Disjunctive Syllogism holds. ■

D. Resolution

One of the central tools of logic programming is the method of
resolution, which is a process of eliminating complementary
literals from conjoined disjunctive clauses through Disjunctive
Syllogism.

Definition 4.7. The generalized resolution rule can be stated
as

l1 ∨ . . . ∨ lk, m1 ∨ . . . ∨mn

l1 ∨ . . . ∨ li−1 ∨ li+1 ∨ . . . ∨ lk ∨m1 ∨ . . .
∨mj−1 ∨mj+1 ∨ . . . ∨mn

, (12)

where li and mj are complementary literals, i.e. li ≡ ¬mj

[11].

Theorem 4.8. The generalized rule of resolution holds in RBM
Logic for resolvents of the form (P ∨Q)∧ (¬P ∨R). That is:

KB ⊨ (P ∨Q) ∧ (¬P ∨R)⇒ KB ⊨ (Q ∨R) (13)

Proof. For compactness and simplicity’s sake, we only show
this for short resolvents. Long cases should hold just as well.

We begin by defining a knowledge base on which to test
the validity of the resolution rule

KB ≡ (P ∨Q) ∧ (¬P ∨R),

and express it in SDNF:

KB ≡ (¬P ∧Q ∧ ¬R) ∧ (¬P ∧Q ∧R)∧
(P ∧ ¬Q ∧R) ∧ (P ∧Q ∧R). (14)



Using Theorem 3.5, we define an energy function to represent
(14):

E = −h1(−P +Q−R− 0.5)− h2(−P +Q+R− 1.5)

− h3(P −Q+R− 1.5)− h4(P +Q+R− 2.5) (15)

and identify the valuations xi which minimize (15).

Assignment Energy Functions
xi P Q R Energy Function
x1 0 0 0 0.5h1 + 1.5h2 + 1.5h3 + 2.5h4

x2 0 0 1 1.5h1 + 0.5h2 + 0.5h3 + 1.5h4

x3 0 1 0 −0.5h1 + 0.5h2 + 2.5h3 + 1.5h4

x4 0 1 1 0.5h1 − 0.5h2 + 1.5h3 + 0.5h4

x5 1 0 0 1.5h1 + 2.5h2 + 0.5h3 + 1.5h4

x6 1 0 1 2.5h1 + 1.5h2 − 0.5h3 + 0.5h4

x7 1 1 0 0.5h1 + 1.5h2 + 1.5h3 + 0.5h4

x8 1 1 1 1.5h1 + 0.5h2 + 0.5h3 − 0.5h4

TABLE VI: Shows truth assignments xi and simplified energy
function (15) for each assignment .

Minimized Energies/Models
xi Minimized Model Resolution

Energy of KB (Q ∨R)
x1 0.0 No No
x2 0.0 No Yes
x3 -0.5 Yes Yes
x4 -0.5 Yes Yes
x5 0.0 No No
x6 -0.5 Yes Yes
x7 0.0 No Yes
x8 -0.5 Yes Yes

TABLE VII: Shows the minimized energy for each assign-
ment, as well as whether the assignment is a model of KB
and if resolution holds for that assignment.

Observing Table VII, we see that x3, x4, x6, and x8 are the
preferred valuations with minimized energy value −0.5. We
also note that each of these valuations is a model of KB and
that the generalized resolution rule holds for each one. ■

E. Resolution Refutation

A standard method of checking for entailment or consistency
in logic programming is resolution refutation. This process
takes a knowledge base KB and a query Q, creates a new
knowledge base KB ′ ≡ KB ∪ {¬Q} and repeatedly applies
resolution to the sentences of the new knowledge base KB ′. If
the empty clause is derived through this process, then KB ′ is
shown to be inconsistent, and thus KB ⊨ Q is proven. Because
this refutation can be made for any knowledge base and
query, resolution is considered a refutation-complete inference
technique [12].

We now consider a similar process in the RBM Logic. We
first define our idea of resolution refutation within this method.

Definition 4.9. Resolution refutation in the RBM Logic will be
defined as the process of adding the query Q to the knowledge
base KB , then creating and minimizing the resulting energy
function based upon KB ∪ {Q}.

Notice that this does differ from the standard resolution
refutation process in that Q is added to KB , rather than ¬Q.
This convention of definition allows the following resulting
theorem to be more intuitive.

Theorem 4.10. Given a knowledge base KB and a query
Q, the RBM Logic will prefer no valuations if KB ∪ {Q} is
inconsistent and will prefer models in which Q ≡ True if
KB ∪ {Q} is consistent.

Proof.
Claim 1: The RBM Logic will prefer no models if KB ∪{Q}
is inconsistent

Subproof. We define a simple knowledge base:

KB ≡ P ∧ (P → Q)

and inconsistent query:
¬Q.

We add our query to our knowledge base and get

KB ′ ≡ P ∧ (P → Q) ∧ ¬Q,

which we then convert into SDNF

KB ′ ≡ (P ∧ ¬P ∧ ¬Q) ∨ (P ∧Q ∧ ¬Q). (16)

We note here that each of our conjunctive clauses contains
an explicit contradiction, i.e. P ∧ ¬P and Q ∧ ¬Q. As such,
none of the clauses in (16) can actually be satisfied, as is to be
expected in the inconsistent case. Further, the SDNF of KB ′

amounts to conjoining the query into each of our conjunctive
clauses in the SDNF of KB .

We now use (16) to define our energy function:

E = −h1(P −P −Q− 1+ 0.5)− h2(P +Q−Q− 2+ 0.5),

from which we cancel out contradictions and simplify to:

E = −h1(−Q− 0.5)− h2(P − 1.5). (17)

We now consider the possible valuations xi and identify those
which minimize the energy function (17).

Assignment Energy Functions
xi P Q Energy Function
x1 0 0 0.5h1 + 1.5h2

x2 0 1 1.5h1 + 1.5h2

x3 1 0 0.5h1 + 0.5h2

x4 1 1 1.5h1 + 0.5h2

TABLE VIII: Shows truth assignments xi and simplified
energy function (17) for each assignment .

As we expected, there are no assignments which would
serve as a model of KB ∪ {Q}. We can also see from Table
IX that all assignments have the same minimized energy, and
as such none are selected as preferred assignments. □

Claim 2: The RBM Logic will prefer valuations xi in which
Q ≡xi True if KB ∪ {Q} is consistent.



Minimized Energies/Models
xi Minimized Model Model of

Energy of KB KB ∪ {¬Q}
x1 0.0 No No
x2 0.0 No No
x3 0.0 No No
x4 0.0 Yes No

TABLE IX: Shows the minimized energy for each assignment
xi, whether the assignment is a model of KB , and whether
the assignment is a model of KB ∪ {¬Q}.

Subproof. We use the same knowledge base as before, but
instead now offer Q as our query. Therefore,

KB ′ ≡ P ∧ (P → Q) ∧Q,

and when converted into SDNF:

KB ′ ≡ (P ∧ ¬P ∧Q) ∨ (P ∧Q ∧Q). (18)

We now define our energy function to represent (18)

E = −h1(P − P +Q− 2 + 0.5)

− h2(P +Q+Q− 3 + 0.5)

and simplify it to

E = −h1(Q− 1.5)− h2(P + 2Q− 2.5). (19)

We now consider possible evaluations xi and identify those
which minimize energy function (19).

Assignment Energy Functions
xi P Q Energy Function
x1 0 0 1.5h1 + 2.5h2

x2 0 1 0.5h1 + 0.5h2

x3 1 0 1.5h1 + 1.5h2

x4 1 1 0.5h1 − 0.5h2

TABLE X: Shows truth assignments xi and simplified energy
function (19) for each assignment.

Minimized Energies/Models
xi Minimized Model Model of

Energy of KB KB ∪ {Q}
x1 0.0 No No
x2 0.0 No No
x3 0.0 No No
x4 -0.5 Yes Yes

TABLE XI: Shows the minimized energy for each assignment
xi, whether the assignment is a model of KB , and whether it
is a model of KB ∪ {Q}.

We see then that x4 is the valuation with minimum energy
and the only valuation which serves as a model for KB∪{Q}.

□

■

V. RESULTS

We have therefore seen that each of the studied properties
either hold exactly as they would be expected to hold in
standard propositional logic, or (as in the case of resolution
refutation) hold in a slightly modified but similar fashion.

In the case of contradictions, one may note that the inclusion
of a complementary pair of literals in a single conjunctive
clause of the SDNF leads to the associated hidden node never
activating. In the energy function term for such an hj , the
canceling out of a positive literal xi, which initially contributed
to an increased |Tj |, force the coefficient of hj to remain
negative regardless of any possible binary assignment xi.
As such, hj must always receive a value of 0 in order to
minimize the energy function. Since this value never varies,
its assignment will have no influence on the value of the
energy function, and no valuation can be preferred by this
term. In the case of a necessarily contradictory knowledge
base, every potential model for KB must include a pair of
these contradictory literals, and the result is that every term
associated with some hj will contain the complementary pair,
forcing hj = 0 for all j. In this situation, no truth assignment
will be preferred, and none could be considered a viable
model.

The above discussion of contradictions suggests that a
change to the value Tj , or rather, the addition of another term
to the energy function, could be made to adjust for the issue
caused by contradictory literals. Further investigation into this
suggestion is warranted, but it seems that adding 1 to the
coefficients of energy terms containing contradictory literals
would completely negate the effects of contradictions in each
of the conjunctive SDNF clauses and result in a system similar
to the paraconsistent three-valued logics.

Further analysis remains for weighted or real-valued logics,
but it seems that this system may be able to more robustly
handle the possibility of contradictions when the value of
assignments is not strictly limited to {0, 1}. We note that
in the above examples, valuations would have minimized
energy values of either −ϵ or 0.0 for models and non-models
respectively. It is suspected that when preferences can be
given to the facts and rules of KB or when the nodes of the
RBMs can be assigned values between 0 and 1, rather than
the classical binary assignments, a wider range of minimized
values may appear.

VI. SUMMARY

Formal logic in a rudimentary form may be the oldest attempt
at modeling intelligence undertaken by humans, and it has
taken significant strides throughout the 20th century. However,
the potential to employ massively-parallelized connectionist
techniques for modeling intelligence and decision making pro-
cesses is a power that should not be understated. An efficient
marriage of these two methodologies would be monumental
in the study of intelligent systems.

The RBM Logic presented in [5] is not yet well studied



and the computational efficiency of such a logical system
may still prove to be a challenge, but we have seen here that
it is quite possible to model many desirable properties of a
formal logic in a system based upon current technologies in
order to make logical inferences and check for entailment or
unstaisfiability. The method presents a promising path forward
for connectionist logic programing, however it remains to
be seen whether this methodology could be manipulated to
represent more expressive logics or if this methodolgy is
simply restricted to a grounded or propositional logic.

In future work, we intend to analyze RBM Logic in real-
valued and weighted versions of propositional logic to investi-
gate the same properties explored here, and also to implement
the methods presented in order to take a knowledge base,
convert it to the necessary form, create and train the associated
RBM, and empirically study the overall efficiency and viability
of this method as compared to other logical inference methods.
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